Further Mathematics Paper 2, May/June. 2012

Question 1

Two functions g and h are defined on the set R of real numbers by $g:x \to x^2 - 2$ and $h: x \to \frac{1}{x+2}$, $x \ne -2$.

Find:

- (a) h^{-1} , the inverse of h;
- (b) $g \circ h$ when $x = -\frac{1}{2}$

Question 2

Write down the first three terms of the binomial expansion $(1 + ax)^n$ in ascending powers of x. If the coefficients of x and x^2 are 2 and $\frac{3}{2}$ respectively, find the values of a and a.

Question 3

Express $3x^2 - 6x + 10$ in the form $a(x - b)^2 + c$ where a, b, and c are integers. Hence, state the minimum value of $3x^2 - 6x + 10$ and the value of x for which it occurs.

Question 4

The twenty-first term of an Arithmetic Progression (AP) is $5\frac{1}{2}$ and the sum of the first twenty-one terms is $94\frac{1}{2}$.

Find the:

- (a) first term;
- (b) common difference;
- (c) sum of the first thirty terms.

Question 5

The gradient function of $y = ax^2 + bx + c$ is 8x + 4. If the function has a minimum value of 1, find the values of a, b and c.

Question 6

Three forces -63j, 32.14i + 38.3j and 14i - 24.25j act on a body of mass 5 kg. Find, correct to one decimal place, the:

- (a) magnitude of the resultant force;
- (b) acceleration of the body.

Ouestion 7

Simplify: $n+1C_4 - n-1C_4$

Question 8

The marks scored by 35 students in a test are given in the table below:

Marks	1 - 5	6 - 10	11 - 20	21 - 30	31 - 35	36 - 40
No of students	2	7	12	8	5	1

Draw a histogram for the distribution.

Question 8

The marks scored by 35 students in a test are given in the table below:

Marks	1 - 5	6 - 10	11 - 20	21 - 30	31 - 35	36 - 40
No of students	2	7	12	8	5	1

Draw a histogram for the distribution.

Ouestion 9

- (a) The polynomial $f(x) = x^3 + px^2 10x + q$ is exactly divisible by $(x^2 + x 6)$. Find the:
 - 1. values of p and q
 - 2. third factor.
- (b) The volume of a cube is increasing at the rate of $2\frac{1}{2}$ cm3s-1. Find the rate of change of the side of the cube when its length is 2 cm.

Question 10

- (a) Write down the matrix **A** of the linear transformation $A(x,y) \rightarrow (2x y, -5x + 3y)$.
- (b) If $\mathbf{B} = \begin{pmatrix} 3 & 1 \\ 5 & 2 \end{pmatrix}$, find:
 - (i) $A^2 B^2$;
 - (ii) matrix $C = B^2A$;
 - (iii) The point M(x,y) whose image under the linear transformation C is M(10, 18).
- (c) What is the relationship between matrix A and matrix C?

Question 11

- (a) Evaluate: $\int_1^4 \frac{x(3x-2)}{2\sqrt{x}} dx$.
- (b) The equation of a circle is given by $2x^2 + 2y^2 8x + 5y 10 = 0$. Find the:
 - (i) coordinates of the centre;
 - (ii) radius of the circle;
 - (iv) Coordinates of P and Q, if the circle cuts the x –axis at the points P and Q.

Question 12

(a) (i) Find the sum of the series

$$A(1 + r) + A(1 + r)^{2} + ... + A(1 + r)^{n}$$
.

- (ii) Given that r = 8% and $A = GH \ 40.00$, find the sum of the 6^{th} to 10^{th} terms of the series in 12(a) (i).
- (b) Find the equation of the tangent to the curve $y = \frac{1}{x}$ at the point on the curve when x = 2.

Question 13

- (a) A fair die with six faces is thrown six times. Calculate, correct to three decimal places, the probability of obtaining:
 - (i) exactly three sixes;
 - (ii) at most three sixes.
- (b) Eight percent of screws produced by a machine are defective. From a random sample of 10 screws produced by the machine, find the probability that:
 - (i) exactly two will be defective;
 - (ii) not more than two will be defective.

Question 14

The table gives the distribution of heights in metres of 100 students

Height	1.40 -1.42	1.43-1.45	1.46-1.48	1.49-1.51	1.52-1.54	1.55-1.57	1.58-1.60	1.61-1.63
Frequency	2	4	19	30	24	14	6	1

- (a) Calculate the:
 - (i) mean height;
 - (ii) mean deviation of the distribution.
- (b) What is the probability that the height of a student selected at random is greater than the mean height of the distribution?

Question 15

- (a) Two items are selected at random from four items labelled (p, q, r, s).
- (i) List the sample space if sampling is done:
 - (μ) with replacement;
 - (b) without replacement.
 - Find the probability that r is at least one of the two objects selected:
- (b) in $a(i) \mu$;
- (c) in a (i) b.
- (b) How many whole numbers from 100 to 999 are divisible by:
 - (i) 4;
 - (ii) both 3 and 4?

Ouestion 16

- (a) A body P of mass 5 kg is suspended by two light inextensible strings AP and BP attached to a ceiling. If the strings are inclined at angles 400 and 300 respectively to the downward vertical, find the tension in each of the strings. $\{Take\ g=10ms-2\}$.
- (b) A constant force F acts on a toy car of mass 5 kg and increases its velocity from 5 ms-1 to 9 ms-1 in 2 seconds. Calculate the:
 - (i) magnitude of the force;
 - (ii) velocity of the toy car 3 seconds after attaining a velocity of 9 ms-1.

Question 17

(a) Given that $\mathbf{p} = (4\mathbf{i} - 3\mathbf{j})$ and $\mathbf{q} = (-\mathbf{i} + 5\mathbf{j})$, find \mathbf{r} such that $|\mathbf{r}| = 15$ and is in the direction of $(2\mathbf{p} + 3\mathbf{q})$.

Forces of magnitude 8N, 6N and 4N act at the point P, as shown in the diagram above. Find the:

- (i) magnitude;
- (ii) direction of the resultant force.

Question 18

- (a) Find the angle between the vectors $\mathbf{a} = \begin{pmatrix} -3 \\ 4 \end{pmatrix}$ and $\mathbf{b} = \begin{pmatrix} -8 \\ -15 \end{pmatrix}$.
- (b) Given that $\mathbf{a} = (4 \text{ N}, 060^{\circ})$ and $\mathbf{b} = (3 \text{ N}, 120^{\circ})$, find, in component form, the unit vector along $\mathbf{a} \mathbf{b}$.