Further Mathematics Paper 2, May/June. 2012

Question 1

Two functions g and h are defined on the set R of real numbers by $g: \mathrm{x} \rightarrow \mathrm{x}^{2}-2$ and $h: \mathrm{x} \rightarrow \frac{1}{x+2}, \mathrm{x} \neq-2$.
Find:
(a) h^{-1}, the inverse of h;
(b) g oh when $x=-\frac{1}{2}$

Question 2

Write down the first three terms of the binomial expansion $(1+a x)^{n}$ in ascending powers of x. If the coefficients of x and x^{2} are 2 and $\frac{3}{2}$ respectively, find the values of a and n.

Question 3

Express $3 x^{2}-6 x+10$ in the form $a(x-b)^{2}+c$ where a, b, and c are integers. Hence, state the minimum value of $3 x^{2}-6 x+10$ and the value of x for which it occurs.

Question 4

The twenty-first term of an Arithmetic Progression (AP) is $5 \frac{1}{2}$ and the sum of the first twenty-one terms is $94 \frac{1}{2}$.
Find the:
(a) first term;
(b) common difference;
(c) sum of the first thirty terms.

Question 5

The gradient function of $y=a x^{2}+b x+c$ is $8 x+4$. If the function has a minimum value of 1 , find the values of a, b and c.

Question 6

Three forces $-63 \boldsymbol{j}, 32.14 \boldsymbol{i}+38.3 \boldsymbol{j}$ and $14 \boldsymbol{i}-24.25 \boldsymbol{j}$ act on a body of mass 5 kg .
Find, correct to one decimal place, the:
(a) magnitude of the resultant force;
(b) acceleration of the body.

Question 7

Simplify: $\quad{ }^{n+1} C_{4}-{ }^{n-1} C_{4}$

Question 8

The marks scored by 35 students in a test are given in the table below:

Marks	$1-5$	$6-10$	$11-20$	$21-30$	$31-35$	$36-40$
No of students	2	7	12	8	5	1

Draw a histogram for the distribution.

Question 8

The marks scored by 35 students in a test are given in the table below:

Marks	$1-5$	$6-10$	$11-20$	$21-30$	$31-35$	$36-40$
No of students	2	7	12	8	5	1

Draw a histogram for the distribution.

Question 9
(a) The polynomial $f(x)=x^{3}+p x^{2}-10 x+q$ is exactly divisible by $(x 2+x-6)$. Find the:

1. values of p and q
2. third factor.
(b) The volume of a cube is increasing at the rate of $\mathbf{2}^{1 / 2} \mathbf{~ c m 3 s}-1$. Find the rate of change of the side of the cube when its length is 2 cm .

Question 10

(a) Write down the matrix \mathbf{A} of the linear transformation

$$
A(x, y) \rightarrow(2 x-y,-5 x+3 y)
$$

(b) If $\mathbf{B}=\left(\begin{array}{ll}3 & 1 \\ 5 & 2\end{array}\right)$, find:
(i) $\mathbf{A}^{2}-\mathbf{B}^{2}$;
(ii) matrix $\mathbf{C}=\mathbf{B}^{2} \mathbf{A}$;
(iii) The point $\boldsymbol{M}(\mathrm{x}, \mathrm{y})$ whose image under the linear transformation \mathbf{C} is $\boldsymbol{M}(10,18)$.
(c) What is the relationship between matrix \mathbf{A} and matrix \mathbf{C} ?

Question 11

(a) Evaluate: $\int_{1}^{4} \frac{x(3 x-2)}{2 \sqrt{x}} \mathrm{dx}$.
(b) The equation of a circle is given by $2 x^{2}+2 y^{2}-8 x+5 y-10=0$. Find the:
(i) coordinates of the centre;
(ii) radius of the circle;
(iv) Coordinates of P and Q, if the circle cuts the x-axis at the points P and Q.

Question 12

(a) (i) Find the sum of the series
$\mathrm{A}(1+\mathrm{r})+\mathrm{A}(1+\mathrm{r})^{2}+\ldots+\mathrm{A}(1+r)^{\mathrm{n}}$.
(ii) Given that $r=8 \%$ and $A=G H \$ 40.00$, find the sum of the $6^{\text {th }}$ to $10^{\text {th }}$ terms of the series in 12(a) (i).
(b) Find the equation of the tangent to the curve $y=\frac{1}{x}$ at the point on the curve when $x=2$.

Question 13

(a) A fair die with six faces is thrown six times. Calculate, correct to three decimal places, the probability of obtaining:
(i) exactly three sixes;
(ii) at most three sixes.
(b) Eight percent of screws produced by a machine are defective. From a random sample of 10 screws produced by the machine, find the probability that:
(i) exactly two will be defective;
(ii) not more than two will be defective.

Question 14
The table gives the distribution of heights in metres of $\mathbf{1 0 0}$ students

Height	$1.40-1.42$	$1.43-1.45$	$1.46-1.48$	$1.49-1.51$	$1.52-1.54$	$1.55-1.57$	$1.58-1.60$	$1.61-1.63$
Frequency	2	4	19	30	24	14	6	1

(a) Calculate the:
(i) mean height;
(ii) mean deviation of the distribution.
(b) What is the probability that the height of a student selected at random is greater than the mean height of the distribution?

Question 15
(a) Two items are selected at random from four items labelled ($\mathbf{p}, \mathbf{q}, \mathrm{r}, \mathrm{s}$).
(i) List the sample space if sampling is done:
(μ) with replacement;
(b) without replacement.

- Find the probability that r is at least one of the two objects selected:
(b) in a(i) μ;
(c) in a (i) \mathbf{b}.
(b) How many whole numbers from 100 to 999 are divisible by:
(i) 4 ;
(ii) both 3 and 4?

Question 16
(a) A body P of mass 5 kg is suspended by two light inextensible strings AP and BP attached to a ceiling. If the strings are inclined at angles 40 o and 30 o respectively to the downward vertical, find the tension in each of the strings. \{Take $g=10 \mathrm{~ms}-2]$.
(b) A constant force F acts on a toy car of mass 5 kg and increases its velocity from $5 \mathrm{~ms}-1$ to $9 \mathrm{~ms}-1$ in 2 seconds. Calculate the:
(i) magnitude of the force;
(ii) velocity of the toy car $\mathbf{3}$ seconds after attaining a velocity of $\mathbf{9} \mathbf{~ m s}-\mathbf{1}$.

Question 17

(a) Given that $\mathbf{p}=(4 \boldsymbol{i}-3 \boldsymbol{j})$ and $\mathbf{q}=(-\boldsymbol{i}+5 \boldsymbol{j})$, find \mathbf{r} such that $|\mathbf{r}|=15$ and is in the direction of $(2 \mathbf{p}+3 \mathbf{q})$.
(b)

Forces of magnitude $8 N, 6 N$ and $4 N$ act at the point P , as shown in the diagram above. Find the:
(i) magnitude;
(ii) direction of the resultant force.

Question 18

(a) Find the angle between the vectors $\mathbf{a}=\binom{-3}{4}$ and $\mathbf{b}=\binom{-8}{-15}$.
(b) Given that $\mathbf{a}=\left(4 N, 060^{\circ}\right)$ and $\mathbf{b}=\left(3 N, 120^{\circ}\right)$, find, in component form, the unit vector along $\mathbf{a}-\mathbf{b}$.

